
Simulating ADS-B Attacks in Air Traffic
Management

Anton Blåberg
Department of Computer and Information Science

Linköping University
Linköping, Sweden

antbl294@student.liu.se

Andrei Gurtov
Department of Computer and Information Science

Linköping University
Linköping, Sweden
andrei.gurtov@liu.se

Gustav Lindahl
Department of Computer and Information Science

Linköping University
Linköping, Sweden

gusli687@student.liu.se

Billy Josefsson
Luftfartsverket

Norrköping, Sweden
billy.josefsson@lfv.se

Abstract—In Air Traffic Management (ATM) training, simu-
lations of real air traffic control (ATC) scenarios are a key part
of practical teaching. On the internet one may find multiple
different ATM simulators available to the public with open
source code. Today most aircraft transmit data about position,
altitude, and speed into the atmosphere that practically are
unencrypted data points. This data is called automatic dependant
surveillance broadcast (ADS-B) data. The lack of security means
that potential attackers could project ”fake” ADS-B data and
spoof existing data to air traffic controllers (ATCO) if the right
equipment is used. We see this as a security flaw and we want to
prepare ATCO for cyberattacks by modifying an ATM simulator
with cyberattacks. First, OpenScope was chosen as the ATM
simulator to be modified. Subsequently, three types of attacks
were chosen for the simulator to be equipped with, based on ADS-
B weaknesses from existing literature: aircraft not responding to
commands, aircraft with altering positional data, and aircraft
with incorrect speed and altitude data. The recorded parameters
were the written command lines and corresponding aircraft type
it was applied to. Using this modified simulator, ATCO can now
be evaluated against cyberattacks.

Index Terms—ADS-B, Security, Aviation, Cyberattack, open-
Scope, Simulation

I. INTRODUCTION

Global interest in cybersecurity has been steadily growing
for the past seven years [1]. Today, it is common for enterprises
to practice network security routines and people are realizing
the benefits and necessity of protection against cyberattacks.
This can be seen in the growing global interest in Virtual
Private Networks services and cybersecurity [2], [1]. If people
are so guarded regarding their personal data, should we not
put as much focus on protecting vital information about the
aircraft we travel with? Information regarding aircraft should
be of much higher priority because cyberattacks in air traffic
management (ATM) may lead to disaster.

Aircraft transmit data such as altitude, position, and speed to
other aircraft and ground stations. This surveillance system is

The project was supported by Automation Program II, Trafikverket

called Automatic Dependent Surveillance Broadcast (ADS-B).
There has been scientific discussion about the flaws of ADS-
B recently, but there is not as much discourse as there was a
few years ago. In 2012, a team of security researchers proved
that is was possible to spoof ADS-B data with a low-cost
hardware setup combined with moderate software technology.
Their research also concluded that it is impossible to verify
the data points as real, or a spoof [3].

The same security researchers also claimed that the security
flaws of ADS-B have been widely covered in other studies, but
the core problems have never been addressed [3]. If this was
known eight years ago and the system remains unmodified,
one may argue that ADS-B is even more unsafe now. The
reasoning behind this logic is that the attackers would have
had more time to learn how to make more efficient attacks.

The number of problems found in the system are many,
with few solutions found to solve them. In an article by
Gurtov et. al. from 2018, the authors discuss solving a sim-
ilar problem [4]. This team was researching how to make
Controller-Pilot Data Link Communication (CPDLC) safer.
Three different solutions are then presented that could possibly
be used for securing ADS-B.

The primary aim of our paper is to prepare air traffic
controllers (ATCO) against cyberattacks. The secondary aim is
to further present the security flaws in Air Traffic Management
(ATM) originating from ADS-B.

To reach these goals, the following research questions were
formulated:

• How could a known ATM simulator be modified to track
ATCOs responses to cyberattacks?

• How can a modified ATM simulator expose the weak-
nesses of ADS-B?

By answering these research questions we hope to get a
simulator that will help preparing future generations of ATCO
for cyberattacks.

1



This is an area that can easily get quite large and therefore
it is important to know the delimitation of this paper. One such
delimitation is that this paper will not survey multiple ATCOs
with the simulator. This paper will also only focus on attacks
on ATM that is made possible because of proven weaknesses
in ADS-B. Instead this paper will give the tools needed for
simulation training and evaluation of ATCOs.

The rest of the paper is organized as follows. Section II
presents theory of ADS-B and Section III compares the two
different simulators. Section IV says how the simulator was
modified and Section V shows the end result of the simulator.
In Section VI a discussion is made about the simulator. Lastly,
the conclusion is presented in Section VII.

II. BACKGROUND

In order to begin answering our research questions, the
collection of background knowledge in a few areas was
first necessary. The following section contains information
on the communication technology ADS-B used in ATM and
showcases its weaknesses. Later, different attacks on ATM
originating from the weaknesses of ADS-B are presented.
Lastly, the necessity of ATCOs and other works in the area of
ATCO evaluation is discussed.

A. ADS-B

Automatic Dependent Surveillance Broadcast (ADS-B) is
the technology that mainly is used in today’s airlines for
communication between aircraft and the controllers working
in ATC. This system is used to improve many factors for both
pilots and air traffic controllers, including collision avoidance
and situational awareness [5]. While ADS-B improves com-
munication, it also exhibits weaknesses, mainly that ADS-B
is not encrypted and that any person with the correct gear can

both read and send ADS-B data without any difficulty [6],
which calls for improvement.

Before ADS-B, a few different technologies were used,
including procedural air traffic control, primary radar surveil-
lance, and secondary radar surveillance. These three methods
work in different ways, which made it hard for both pilots
and ATCOs to perform their duties. Procedural air traffic
control is a very human dependent system because the pilot
reports their position to the ATCOs with their voice. This
system is tedious to use and prone to mistakes. Primary radar
surveillance is less dependant on humans as it does not require
any human input. Primary radar surveillance uses ground bases
that calculate the position of aircraft and send it forward to
other bases. This may be easier, but causes less accuracy.
Secondary radar surveillance is a mixture of procedural air
traffic control and primary radar surveillance. Secondary radar
surveillance has ground bases that calculate the position, but
the aircraft provides the altitude and identification [5].

The difficulty in handling such diverse and distinct systems
made apparent the necessity of a standardized method. From
this necessity came ADS-B, which was meant to redefine air
traffic communication as a whole.

ADS-B stands for Automatic Dependant Surveillance
Broadcast. It is automatic because it requires no input from the
pilot or any other human work. It is dependent on a working
navigation system, most often GPS, for sending its position
and velocity. Surveillance comes from the fact that the aircraft
is providing information to facilities that require it. Finally, it
broadcasts the information to other aircraft and ground stations
every half-second [7]. Another big difference between ADS-
B and older systems is the accuracy of the system. At 60
nautical miles (≈111 km) ADS-B has a positional accuracy of
20 m, which is fifteen times better than radar technology. If the

Fig. 1: Components of ADS-B (derived from [5]).

2



distance increases, the positional accuracy for ADS-B would
not decrease unlike to radar technology. Radar technology has
decreases in positional accuracy every kilometer [8].

1) Workings: For ADS-B to work, two things need to exist:
a way to send information and a way to receive information.
The standard is to have two operations: ADS-B OUT and
ADS-B IN. The OUT component takes information from the
GPS and other equipment and broadcasts the information to
everyone near the aircraft. Other aircraft will receive the signal
with their ADS-B IN, which will then display the information
to the pilots. There are also ground stations that receive the
signal. The ground stations will take the signal, process the
information and send it to ATC, which then displays the
information. Meanwhile, the ground station will broadcast the
signal for further spread. Important to apprehend is that ADS-
B OUT and ADS-B IN can work separately, meaning ADS-B
OUT and ADS-B IN are not dependant on each other to send
or receive data [5]. A generalized image of the structure of
communication in ADS-B is provided in Figure 1.

The ADS-B broadcast includes information such as the
flight identification, which is a flight number or call sign and
the ICAO 24-bit Aircraft Address, which is a unique code for
each aircraft. The broadcast also contains the aircraft’s latitude
and longitude, the accuracy of the position, and the rate of
either climb or descent, [7]. This information will be shown
graphically for both pilots and ATCOs.

For the messages to be transmitted, a form of a data link
is required. For ADS-B, there are mainly two different types
of data links to use. The more popular one of these two sends
on the 1090 MHz link and uses the already in-place Mode
S transponders. This feature for Mode S is called Extended
Squitter, and altogether this method is called 1090ES. The
other method is called Universal Access Transceiver (UAT)
which was created for ADS-B and uses the 978 MHz fre-
quency. When using this method it is possible to get 1 Mbps
in bandwidth. Determining the best data link out of the two
is hard, 1090ES is more common since it can use Mode S,
which many aircraft already have installed, while UAT needs
newer hardware, therefore most people prefer 1090ES [9].

When using Mode S, the message is either 56 or 112 bits
long compared to 1090ES which always is 112 bits long. In
these 112 bits, the first five bits define the type of message
and for 1090ES it is set to 17 in binary. Afterward, there are
three bits for the communication capability for the transponder.
Next is 24 bits for the ICAO aircraft address, followed by 56
bits that contain the rest of the data. Lastly, there are 24 bits
of parity check to detect transmission errors. These 112 bits
are what make ADS-B special, and weak. This is because the
transmitter has a function that allows it to control who will
see the message and does not use a keep-alive function [5].

B. Attacks on ATM

Attackers may choose many different methods of disturbing
the communication of ATM, such as Distributed Denial of
Service attacks (DDoS) and radio jamming, but this paper
focuses on attacks originating from the weaknesses of ADS-B.

The main problems of ADS-B stem from its lack of security
mechanisms, in the form of:

• lack of authentication codes to protect against imperson-
ating aircraft.

• lack of message encryption for protection against eaves-
dropping.

• lack of entity authentication for protection against man-
in-the-middle attacks [3].

Summarizing these weaknesses of ADS-B, one may categorize
three different forms of attacks on ATM through ADS-B.

• Impersonating aircraft with a radio transmitter transmit-
ting ADS-B data.

• Eavesdropping on ADS-B data.
• Modifying existing ADS-B data.

The structure of ADS-B communication is shown in Figure 1.
An attacker may impersonate as an aircraft if the attacker
manages to send data both to the ground station and to re-
ceiving aircraft, according to Figure 1. Schäfer et al discusses
different kinds of active attacks on ADS-B. In the paper, the
writers discuss an attack associated with impersonating an
aircraft which they called Ghost Aircraft Injection and this
attack is based on fake message injection. The ghost aircraft
must have realistic properties of altitude, speed, and position
to be indistinguishable from real aircraft. This attack could
confuse ATCOs working on the ground stations [10]. It is
not hard to give the attacker realistic properties of the ghost
aircraft because there is no encryption on real ADS-B data.
The attacker may collect data from a long period of time to
improve the properties of the ghost aircraft and increase its
indistinguishability.

Schäfer et al also discuss attacks regarding modifying exist-
ing ADS-B data. Virtual Trajectory Modification is an attack
that aims to modify the trajectory of an existing aircraft [10].
The authors assert this can be done in two ways. Firstly,
combining the deletion and injection of positional data to
remove the data and replace it with modified positional data.
The latter way modifies the positional data directly in the air.
If the takeover is smooth, the attack might remain undetected
and could make ATCOs give out incorrect directions [10].

C. Preparing Future ATCOs

1) The necessity of ATCOs: For an aircraft to fly safely,
there is a demand for competent ATCOs capable of directing
aircraft from takeoff to their final destination [11]. ATCO
students will learn through multiple different simulation en-
vironments. For example, students in Malmö at Entry Point
North ATS Academy experience simulations in areas such as
air traffic service, air traffic rules, flight navigation, meteo-
rology, and flight-English [12]. Examples of communication
between ATCOs and pilots consist of departure clearance,
takeoff clearance, and landing clearance [13]. We believe it
is of great importance to give ATCOs a simulator capable of
handling cyberattacks to prepare for real scenarios.

2) Studies in the area of ATCO evaluation: Brookings et
al have previously studied the responses of ATCOs during

3



changes in workload from a psychophysiological perspective
in 1996 [14]. In the essence of ADS-B, the paper above is
not very relevant as ADS-B was never discussed. We believe
our paper and our modified simulator could improve current
ATCOs and ATCO students and support future investigations
in the area of ATCOs response to cyberattacks.

III. CHOOSING A SIMULATOR

Testing and comparisons between simulators had to be done
to find the most suitable simulator for modification. We want to
modify the greatest ATC simulator we can find and we want
the simulator to be easy to deploy for simulation training.
By choosing to modify the best suitable simulator, we give
ourselves the best foundation for a successful modification
in a successful simulator. Today there are multiple free ATC
simulators available, but not all simulators are suitable for
modification, due to not not being open-sourced. An example
of a non open-sourced simulator is ATC-SIM, founded in
2007 [15]. OpenScope Air Traffic Control Simulator (open-
Scope) and BlueSky Open Air Traffic Simulator (BlueSky)
are two examples of simulators that are open-sourced and
available on GitHub. These are our two finalists as we believe
these are the only open-sourced simulators available and we
will now compare them further. To have the ability to modify
a simulator, we need access to the source code running the
simulator and also the right to modify said code, hence the
need for an open-sourced simulator.

A. OpenScope

Fig. 2: Gameplay footage of openScope ATC Simulator.

The openScope ATC simulator is an open-source ATC sim-
ulating software from 2016 [16]. This project was originally
founded by Jon Ross under the name ZLSA ATC Simulator
in 2014. Later in 2016, Jon Ross met Eric Quinn who saw
great potential and he had big visions for the simulator. It was
then imported to GitHub and more easily accessible to the
public. Since then the simulator has steadily been developed by
enthusiasts, both in aviation and programming. As of May 26,
2020, the main contributors of openScope are Eric Quinn and
Nate Geslin [17]. Both Eric and Nate have great knowledge in
aviation and programming but Eric has the greatest knowledge
in aviation and Nate’s talents reside in programming.

Fig. 3: Gameplay footage of BlueSky ATC Simulator.

OpenScope can be accessed and played online via their
website1, directly in the browser. A screenshot of the gameplay
can be seen in Figure 2. The version used for this comparison
was v6.16.0, the latest version as of April 5, 2020. From our
observations, we felt openScope mainly serves as a practice
tool for future ATCOs, while also being able to serve as an
analysis tool in the area of air traffic management. 98.4 % of
the source code of openScope is written in JavaScript, the last
1.6 % is written in CSS and HTML [17].

B. BlueSky

BlueSky originates from Delft University of Technology
(TU Delft) in the faculty of Aerospace Engineering. As of May
26, 2020 the main contributors of BlueSky are Joost Ellerbroek
and Jacco Hoekstra, both currently working at TU Delft [18].
This simulator is also open-sourced but its development has
not reached the same popularity as openScope. More compar-
isons between the development processes can be seen in the
next section.

BlueSky has very similar functionalities to openScope, such
as, controlling the rate of aircraft and commanding them to
land or takeoff. On the other hand, BlueSky cannot run in-
browser, like openScope. The process of starting the simulator
of BlueSky is a much bigger task, as the user needs to down-
load all the files, install Python and a couple of frameworks
to run the program in a python environment. According to
BlueSky, the purpose of the simulator is to provide everybody
who wants to visualize, analyze, and simulate air traffic with
a tool to do so without any restrictions [19]. BlueSky may be
a hassle to install but 100% of the source code for BlueSky is
written in Python which may have benefits for developers [18].
Figure 3 shows a screenshot of the gameplay for BlueSky.

C. Comparison

This section will discuss the differences between the simu-
lators and the reasoning for the chosen simulator.

We want to find the simulator with the greatest popularity
and stability together with a simple process of modification. In

1https://www.openscope.co

4



TABLE I: Software comparison between openScope and BlueSky [17], [18].

Comparison
Simulator openScope BlueSky
Main programming language JavaScript Python
Installation time in seconds 210 680
Contributors 75 18
Active branches 15 2
Forks 111 102
GitHub stars 304 110
LOC (Main language) 15861 21044
LOC (Total) 400399 34437

Table I we can see where the two simulators differ. Program-
ming languages do not make a major difference but are more of
a preferred language for the developer. The second variable in
Table I is the time it took for us to install the simulator and run
it locally on our computers. This value is heavily dependant
on internet and hardware speed as well as the amount of pre-
installed programs on the computer running the simulator. For
example, to run BlueSky locally, Python and Anaconda had
to be installed, which is 0.8 and 5.8 GB respectively. If this
was already installed the installation time would be drastically
faster. The time to install on a fresh environment was of great
interest because we want the chosen simulator to be simple to
install for future testers and developers.

The next four variables in Table I, Contributors, Active
branches, Forks, and GitHub stars tell the simulators’ pop-
ularity. All of these values can be seen on the simulators’
respective GitHub. Contributors are the number of users that
have contributed to writing code for the simulator. While
the number of contributors tells us how many have worked
on the project, the number of active branches tells us how
popular the simulator currently is. Meaning if there are more
branches, more people are currently working on the program.
Meanwhile, the number of forks tells us the amount of people
having worked on the project on their own, since the start of
the project. With the number of GitHub stars, it is possible to
see how many people are interested in the project. In all these
four categories openScope is ahead, which shows that it is a
more popular simulator over BlueSky.

The final two rows in Table I show how many lines of
code (LOC) each simulator has. While it is possible to see
that BlueSky has more lines in its main language compared
to openScope, it does not necessarily mean that it is a more
complex simulator. If one looks at the number of total lines one
can see that openScope is miles ahead in the total amount of
code. The reason for the massive amount of LOC in openScope
is because the simulator has a lot of external data written with
JavaScript Object Notation (JSON). OpenScope has almost
900 files with information about different types of aircraft,
airlines, and airports. Out Of these files almost 600 of them are
data about different airports, where each airport has anything
from a few hundred to a few thousand LOC.

Two clear differences between openScope and BlueSky
are installation process and popularity and openScope is the
winner in both categories. We want to choose a popular

simulator with a simple setup process for programming and
testing. BlueSky is more of an open-world ATM simulator
where users can go where they want while openScope is
locked at a specific airport at a time. OpenScope has a built-
in traffic generator which means the game can be played
endlessly while BlueSky does not have a traffic generator.
Instead, BlueSky has prepared scenarios that the user can play
and the user may also add an aircraft at any time of playing.
This is a major difference between the simulators and we
believe BlueSky gives the user more control of the settings.
Giving the user deep control of the settings is of value but
is not our primary goal. OpenScope may not give the user
the same amount of tools, but the developer can still change
anything in the code. To add aircraft with ADS-B attacks, the
code still needs to be rewritten greatly in any simulator. With
this in mind, we made our decision based on popularity and a
simple installation process. Therefore, openScope was selected
as our simulator of choice to perform threat modification.

IV. TYPES OF ATTACKS

This section will explain the method that was used for
choosing simulator and attack types as well as the program-
ming process.

A. Choosing simulator and attack types

The pre-study of this paper consists mostly of choosing the
most suitable attack types to program into the simulator and
comparisons between ATC simulators. The chosen attack types
were based on what was deemed possible with ADS-B attacks,
which itself was based on known weaknesses of ADS-B from
literature. If one wants to answer the questions at hand in the
future, one should choose the type of ADS-B attack that is
the most common or most plausible of happening in a real
scenario at that given time. In this paper, the chosen attack
types were established from the present weaknesses of ADS-
B. The chosen attack types to program in the simulator are
stated below.

• Aircraft not responding to commands.
• Aircraft with sudden changes to their position data.
• Aircraft with incorrect altitude and speed data.

To define the most suitable ATC simulator for modification it
was first needed to define what makes a simulator great. Two
things that were mainly valued were great documentation of
code and a simple setup process of the program. At the time
of writing this paper, the only open-sourced ATC simulators

5



available were BlueSky and openScope. One should try to
compare all available open-sourced ATC simulators to better
find the best simulator for modification. Documentation can
often be found on the simulators website or a potential Github
site for the simulator. Documentations having a dedicated
section for developers or people wanting to contribute to the
code is of great value.

Comparing the setup process was accomplished by setting
up both simulators on a computer. The faster the process of
installation, the better. A common obstacle in the installation
process was different types of plugins and additional software
needed to run the simulator. Some software can be easy to
install and some can be more complex and time-consuming.
When selecting the simulator with the simplest setup process,
it is important to try the setup process on different operating
systems. Both the developers and future controllers testing
the simulator benefit from a simpler setup process. During
development, computers running both Windows and macOS
were available, and both simulators were tested on both
operating systems. After a thorough comparison, a single
simulator has to be selected for the implementation of the
attacks. A wider comparison between the two simulators can
be found in section III-C.

B. Implementation

The implementation part of the method will describe how
the different attack types were implemented in the chosen
simulator openScope. The first thing that was added was a
way to differentiate different aircraft, e.g. if it is of attack
type ”non-responsive” or attack type ”incorrect altitude and
speed”. This was done by giving each aircraft a variable called
attackType that will change value between 0 and 3 depending
on what type that specific aircraft is (regular, non responsive,
changes position, or altering data).

1) Non-responsive: The next step was to implement the
attacks, starting with the non-responsive aircraft. For this
attack it was wanted to change how the method for giving
commands to different aircraft was working, e.g. if the user
wants an aircraft to turn or change speed. The desired goal
was to make sure that no aircraft with attackType 1 would
go beyond this point. This was solved easily with a simple
if-statement that makes sure that the attackType is not 1.
If attackType is not 1, the given command is executed as
normal. If it is 1, the output of the given command will be
”No response” instead of the normal output when a command
is successful.

2) Changing position: For the next attack with changing
position, the goal was for the aircraft to change its posi-
tion around the airport seemingly at random. This part of
the implementation was made in each aircraft’s individual
updatePhysics function which normally moves the aircraft
multiple times each second. To make an aircraft change posi-
tion, the code is checking every two seconds for three separate
values. The first value to be checked is if the attackType is 2.
The second value is if the aircraft’s position was in the range
of the airport to save some computing power for the rest of

the program, as aircraft jumping around outside of the airport
area was not desired. The last value that the code looks at
was if it had tried to make a jump already during any given
second. This is because the developers decided that any given
aircraft can only make one jump every other second. Since
we do not want all of the aircraft with attackType 2 to jump
at the same time, another if-statement was added, this time to
make it harder for an aircraft to jump. In this if-statement a
random number is generated and if that number is equal to 1,
that aircraft will perform a jump. The random number will be
generated in different ranges depending on how often the user
wants the aircraft to jump. Five intervals with different ranges
were chosen and 0 to 120 was the smallest interval and 0 to
60 000 was the greatest interval.

If a jump is to occur the following would happen. A random
point in a circle with a certain radius is generated. Next it is
decided where this point is in relative to the airports center and
finally the aircraft changes its position to this new position.

3) False information: The last attack that was implemented
was aircraft with wrong altitude and speed data. This means
that a given aircraft will be flying at a specific altitude with
a specific speed, but for the user that altitude and speed is
something else, i.e. if an aircraft has a speed of 300 knots and
the user observes a speed of 400 knots. For the implementation
of this attack, each aircraft was given two extra variables;
fakeAltitude, and fakeSpeed. These variables will be as-
signed a random value at the beginning of the simulation. To
get the possible ranges for these variables, we first needed to
know what are reasonable values. To figure this out we looked
at other aircraft’s altitude and speed in the simulator and took
the maximum and minimum of each category. This gave us
the following intervals. Variable fakeAltitude’s interval is
between 5000 and 40, 000 feet and this number should also be
divisible by 100. It needs to be divisible to keep the similarity
for the real values. On the other hand fakeSpeeds interval is
between 280 and 600 knots and this value has to be divisible
by 10 for the same reason as above. Each aircraft will have
these variables with assigned values, regardless of what kind
of attackType they are, but only aircraft with attackType 3
will ever use this variable.

When the code is showing the user what altitude and
speed an aircraft has in the graphical user interface (GUI),
it checks if the aircraft has attackType 3. If that is the case,
it shows fakeAltitude and fakeSpeed, otherwise, it shows the
real altitude and speed.

4) Tracking and logging: The second-to-last thing that had
to be implemented in the code was a way for the program
to keep track of how a user interacts with different aircraft.
The information that is given to the user needs to be relevant
as well as easy to work with. This is because the user would
want to study the interactions after they used the simulator,
the information had to be stored in a downloadable file. Since
JavaScript does not support writing to a local file for safety
reasons, we had to implement a button that downloads a file
with the information. To implement this button, an input of
type ”button” was added to the footer. When someone then

6



presses the button, an event listener will notice the button press
and will call a method. In this method, a temporary HTML
a tag is created which will get the attributes ”download” and
the chosen filename. This element will also have an attribute
containing the data we want to save. We will then add this
temporary element to the document and simulate a button press
to download the file. Finally we remove the element from the
document again. To keep track of the information, we have a
log variable of type String that will have all the information
we want to save in the logfile.

5) GUI: The last thing left for implementation was the
GUI. We wanted to give the user a way to select how many
attacking aircraft there would be and also how to distribute the
different attack types. This was done by creating a new menu
similar to the already existing settings menu. We achieved
this by creating a new button in the footer labeled ”Attacks”.
When someone presses the button the new menu will show
up. This was then followed by creating the content of this
new menu. There were six different settings we wanted, with
the fifth one being the radius of the jumps and the sixth one
being able to change the probability for a jump. For each
setting a drop-down menu was used. With a new class for
these drop-downs, it was now easy to add new settings. For
a new setting to be created it needed a description, an event
handler that will be called when the value changes, and the
different options for that specific setting. Each option needs
a few things; the text that will be shown and what value that
option will represent. To distribute the attack types we used
a weighing scale between zero to five, e.g. if the value of
non-responsive is one and the value of changing position is
two, there will be twice as many aircraft changing positions
as there will be non-responsive ones.

In the class which controls the logic behind the game, the
event handlers were created. Each event handler changes a few
variables that keep track of the weight, radius, or probability.
With a now working weighting system, the next thing was
to choose which aircraft is which attack type. This is done
by taking each weight and adding them together. Each attack
will then have a percentage chosen by taking its weight and
dividing by the total weight. This number is then multiplied
by 100 to get a value between 0 and 100. A random number
is then created, between 0 and

100

selected ratio between attack aircraft and total aircraft
.

If the random number is below 100, it will be an attack aircraft.
If it is not, it will be a normal aircraft. The next step is to
decide what attack type it will be, if the random number is
below 100. If this number is below the percentage for non-
responsive it will be of that type. If it is above the mentioned
percentage, but below the percentage for non-responsive added
by the percentage for changing position aircraft, it will be of
type changing position. If it is neither of these it will be of
type incorrect altitude and speed. Now, a chosen portion of
aircraft will be assigned to attacking aircraft and the attack
types will be distributed according to their weights.

V. ATTACK IMPLEMENTATION

The following section presents the results from the devel-
opment of the simulator.

A. Implementation

A new symbol has been connected to the options menu and
by pressing it, the user will be greeted by a graphical user
interface (GUI) for deployments of ADS-B attacks. This GUI
contains all eligible options and preferences for the simulation
of ADS-B attacks. Connected to this settings menu is also a
manual informing the user how to operate the deployment of
ADS-B attacks into the simulator. This GUI can been seen in
Figure 4.

The user will be able to change six different parameters in
the GUI. The first one called ”Percentage of Aircraft Affected”
is a drop-down menu where the user can choose the percentage
of aircraft affected by ADS-B attacks. The values are static at
90%, 50%, 20%, 5% and 0%. The next three parameters are
all connected to the weighting of which types of attacks the
user wants to deploy. Each attack type has its weighting value
from zero to five. If all of the numbers are of the same value,
the spread of attack types will strive to be evenly distributed.
Let’s say attack type 1 is given weighting value one, attack
type 2 is given weighting value two, and attack type 3 is given
weighting value three. Then the most common attack types,
in order, will be, attack type 3, attack type 2, and lastly attack
type 1. ”Probability of jumps” will set the jumping probability
of position altering aircraft. This value can be set to very low,
low, medium, high, and very high. The last parameter is called
”Distance of jumps”. This radius can be set to three values,
small, moderate, and large. This value will set the jumping
distance of position altering aircraft. At the bottom part of
Figure 4 the simulator tells the user how to save his or her
actions from the current session in a logfile by pressing the
button ”Download logfile”.

When the ”Download logfile” button is pressed, the user
will download a text file called ”log.txt” containing a list of
all commands the user has executed. This text file contains
timestamp, command type, command value, which aircraft
it was called to and what attack type the aircraft was. If
the aircraft is not affected by ADS-B attacks, the type will
be Regular. The four aircraft types are, ”Jumping”, ”Non-
responisve”, ”False Information” and ”Regular”.

B. Attack types

In this section, the different attack types are presented.
Aircraft affected by ADS-B attacks will look the same as
aircraft not affected by ADS-B attacks in the simulator. The
only way to distinguish real aircraft from aircraft affected by
ADS-B attacks is through the actions of the aircraft.

If the user enters a command to a non-listening aircraft, the
simulator will not do anything with the command as seen in
Figure 5. Commanding other aircraft will give a response but
with this aircraft type no response is given. The aircraft will
not obey any commands given to it from the user and will only
roam around the airport waiting for instructions. The second

7



Fig. 4: A closer look at the Graphical User Interface for
deploying attacks.

Fig. 5: Example of an aircraft not responding to commands.
As the red square is empty, no response is given even when
the aircraft is contacted multiple times. The log file proves
that commands have been given to the aircraft.

attack type is the positional altering aircraft. When positional
altering aircraft is enabled, the user will randomly observe
positional jumps of some aircraft. The interval between each
jump and the position are both random. In Figure 6, an
example of a jump is shown. The third and last attack type is
aircraft with false information about altitude and speed. These
aircraft will always display a static value on altitude and speed,
even when they change speed and altitude, the displayed value
will always stay the same. An aircraft with false information

Fig. 6: Example of an aircraft changing position with high-
lighted areas. The yellow circle shows previous position
and the red circle shows current position.

Fig. 7: Example of an aircraft displaying false
altitude. The aircraft has just entered the air-
port area and the left value shows altitude of
5000 feet.

will be assigned a set value between strict ranges. The altitude
ranges from 5000 (displayed as 50) and 40 000 (displayed as
400) feet and the speed ranges from 280 (displayed as 28) to
600 (displayed as 60) knots. Two numbers can be found above
all aircraft in the simulator. The left number is the altitude
and the right number is the speed. An example of an aircraft
showing false information is shown Figure 7. Since all aircraft
enter the airport area at around 12 000 feet, and the aircraft
in Figure 7 is at 5000 feet while entering the airport area, it
is clear that this aircraft is showing false information.

VI. DISCUSSION

We discuss the results in Section VI-A, the method in Sec-
tion VI-B and initial testing with a real ATCO in Section VI-C.

8



A. Results

When we look at our result, it is more or less what one
would expect. There are still a few things that need some
clarification, for example how one would use this program. It
can be used in different ways, e.g., as an extension to the
original openScope or as a tool to learn more about how
different attacks to ATM would look like. But the greatest
use of the simulator would be to see how ATCO reacts to
these attacks. For this kind of use, we let the user play the
game for half an hour without any attacks and save the logfile.
Afterward, let them play for another half an hour with attacks
and save another logfile. It would then be possible to compare
their responses, with and without attacks. Then compare how
many times the user normally calls on a specific aircraft and
compare that value to how many times the user calls on an
attack aircraft, do they ignore the attack aircraft or do they put
a lot of effort on them?

If we try to compare our results to the weaknesses to
ADS-B as described in Section II-B, we can see that we are
impersonating aircraft with the attack type of altering position.
This is by pretending to be a real aircraft until we suddenly
change our position in a random pattern. Another way we are
impersonating aircraft is by creating spoofed aircraft. We are
also modifying the already existing ADS-B data by giving the
user false altitude and speed information. The only way we
are not abusing the weaknesses of ADS-B in this result is the
possibility of eavesdropping. This is a real threat, that is one
of the easiest to do in reality. The only reason for this threat
to not be implemented is that there is no way for the ATCO
to know if someone has eavesdropped on the communication
and thus there is no need for it in the application. One could
argument that this kind of attack is also implemented in the
form of the logfile, as the logfile contains all communication
between the user and pilots. This information can be seen as a
third party secretly gathering the communication information.

B. Method

For the time that we had at our disposal to complete the
project we believe we got a good result. However, even if
it is a good result it does not mean it could not be better.
Many things could be added for better visualization of the
attacks. One thing that could be improved is how we add attack
aircraft. The way it works now is functional, but if a great
number of attacking aircraft is used there will not be many
regular aircraft left. The way it works is that each airport has
its spawning of aircraft algorithm and when we ”create” new
attack aircraft we simply change the aircraft that would have
been present, regardless of our input. If we instead added new
aircraft to the spawning algorithm we could see more variance
in the spawning. We would also be able to do real flooding
of non-responsive aircraft, for example by adding fifty non-
responsive aircraft to the already thirty or so regular aircraft.
This would be a much harder task for an ATCO and it would
probably be a more realistic case, since adding just a few
fake aircraft that do not respond can be easier to figure out
than adding many new aircraft. This is the biggest fault in our

method and if the implementation would be done again, this
would be changed. If we were to do it again with this change
to the method a new option in the attacks menu would be
needed too. This option would let the user choose the exact
amount of attacking aircraft.

The chosen attack types programmed in the simulator may
be further from reality than expected. Going forward, we will
have more discussions with ATCOs to validate the chosen
attack types possibility in a real scenario.

Another thing that could have been improved in the method
is to add another button. When pressed, this new button would
highlight all the attack aircraft in a different color from the
regular ones. With this new feature it could create a new test
for the user. In this test the user would get to use the program
for a while, after this said time they could guess which aircraft
are attacking aircraft and which are not. With a press of a
button the user would see which are attack aircraft and which
are not. This button will help to determine how good the
ATCOs are at recognizing the attack aircraft in another way,
compared to just a logfile.

Yet another thing that could be implemented is additional
types of attack. For example, adding an aircraft that would stop
contact with other surrounding aircraft. This would simulate
a Denial of Service attack. With this kind of attack, the user
would not be able to do anything but would have to find a
different solution to communicate with the aircraft. If this type
of attack or other types would be implemented the ATCO that
uses the program would get an even wider perception of the
problems with ADS-B. It would also be interesting to see how
they would handle this kind of problem.

These are not all the things we could have executed better.
For example, one of the smaller things that could be improved
is how we calculate the new position of the aircraft when the
attack type is of altering position. Currently we are calculating
a vector in which the aircraft will move in before a jump is
executed. This method is correct mathematically, but to save
on computing power we could simply just set the position
to the new position instead of calculating a vector. Another
improvement in the simulator could be made in making fake
data more realistic. For instance, instead of giving each aircraft
a static value for the fake altitude and fake speed, these values
will change with real values, e.g. if the altitude goes down by
maybe 2000 feet the fake altitude would maybe go down by
1500 feet. If the fake values would be more flexible and not
static it would be harder to detect these aircraft. This could
lead to a delay in the realization of an attacking aircraft.

The last thing that could change has to do with logging.
Currently the information that is saved is fixed, but maybe
some users would need different information than others. This
problem could be solved by making a small menu where the
user could specify what data to be saved in the logfile.

C. Testing on ATCO

We have been given assistance in the development process
from Ms. Supathida Boonsong who has worked in ATM.
She was the first ATCO who tested our simulator and she

9



contributed with great feedback. She pointed out flaws and
improvement areas for the simulator as well as giving us
information about the ATCO security routine for inadequate
aircraft. With her help we now understand more how an
ATCO works. She also stated that the simulator was useful
for educating ATCOs.

VII. CONCLUSION AND FUTURE WORK

A. Conclusion

The purpose of this work is to help prepare ATCOs to
cyberattacks and to further establish the security flaws of ATM
originating from ADS-B. The following two research ques-
tions were then created: How could a known ATM simulator be
modified to track ATCOs responses to cyberattacks? and Can
a modified ATM simulator expose the weaknesses of ADS-B?
Conclusions and answers to these questions can be seen in the
following sections.

By developing this simulator and by sending it to the public
there is now a possibility for real ATCOs to practice against
cyberattacks. Though one cannot know for sure how well this
will help real ATCOs until it has been tested with them. To
better determine how helpful the simulator is, it would have
been wise to gather feedback from many real ATCOs during
and after the development of the modified simulator.

Our second goal, ”further establish the security flaws on
ATM originating from ADS-B”, has only been fulfilled to a
certain extent. The paper does not introduce any new areas
in ADS-B where security is faltering. This work is more of
a reminder that ADS-B is lacking in security by bringing up
papers proving the security flaws.

The first research question is best explained in Section IV,
as this is almost the entirety of our work. Of course, there are
multiple ways to answer this question but our way is explained
most thoroughly in Section IV. More simply, search for an
open-source ATM simulator, research for plausible ADS-B
attacks, and implement them into the simulator by rewriting
the code running the simulator. Then, add a way of saving the
actions of the user playing the simulator in a downloadable
logfile. Make sure the logfile contains the commands called to
the aircraft what what attack type the aircraft was.

We deem that the simulator is a great tool to showcase the
weaknesses of ADS-B. The attack types inside the simulator
are not fictional or made up, instead, the attack types are based
on the real weaknesses of ADS-B from the works of Costin
et. al and Schäfer et. al [3], [10]. To make sure the user
understands the weaknesses of ADS-B, the simulator could
have told the user that the attacks in the simulator are based
on real studies and not made up.

Future systems such as L-band Digital Aeronautical Com-
munications System (LDACS) can fix the security issues
with ADS-B. However, their development, standardization and
deployment is likely to take decades. Meanwhile, we strive
to make both ADS-B and aviation as safe as possible and
encourage to take flaws of ADS-B seriously. We want attention
to be brought upon our modified simulator and its use as a tool
to help prepare ATCOs for real cyberattacks.

B. Future work

To further help ATCOs with the preparation of cyberattacks
with ADS-B, more studies need to be done on real ATCOs
with the help of our simulator. It can also be of great value
to further explore the programming possibilities of more
attack types, greater control of the attack types, and better
observation of the users’ actions against it.

REFERENCES

[1] Google, “Google Trends on Cyber security,”
https://trends.google.com/trends/explore?date=allgeo=USq=cybersecurity,
03 2020, (Accessed on 31/03/2020).

[2] ——, “Google Trends on Virtual Private Networks,”
https://trends.google.com/trends/explore?date=allq=%2Fm%2F012t0g,
03 2020, (Accessed on 31/03/2020).

[3] A. Costin and A. Francillon, “Ghost in the Air (Traffic): On
insecurity of ADS-B protocol and practical attacks on ADS-B
devices,” in BLACKHAT 2012, July 21-26, 2012, Las Vegas, NV,
USA, Las Vegas, UNITED STATES, 07 2012. [Online]. Available:
http://www.eurecom.fr/publication/3788

[4] A. Gurtov, T. Polishchuk, and M. Wernberg, “Controller-Pilot Data Link
Communication Security,” Sensors (Basel), vol. 18, no. 5, 05 2018.

[5] D. McCallie, J. Butts, and R. Mills, “Security analysis of
theADS-B implementation in the next generation air transportation
system,” International Journal of Critical Infrastructure Protection,
vol. 4, no. 2, pp. 78 – 87, 2011. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1874548211000229

[6] Federal Aviation Admission, “Frequently Asked Questions (faqs),”
https://www.faa.gov/nextgen/programs/adsb/faq/#o3, 08 2019, (Ac-
cessed on 30/03/2020).

[7] Airservices Australia, “How ADS-B works,”
http://www.airservicesaustralia.com/projects/ads-b/how-ads-b-works/,
09 2015, (Accessed on 02/04/2020).

[8] H. A. L. Purton and S. Alam, “Identification of ADS-B System
Vulnerabilities and Threats,” Australasian Transport Research Forum.
35 Stirling Highway (M087) Crawley, (Perth) Western Australia 6009:
Patrec, 10 2010.

[9] M. Strohmeier, V. Lenders, and I. Martinovic, “On the Security of the
Automatic Dependent Surveillance-Broadcast Protocol,” IEEE Commu-
nications Surveys Tutorials, vol. 17, no. 2, pp. 1066–1087, Secondquar-
ter 2015.

[10] M. Schäfer, V. Lenders, and I. Martinovic, “Experimental Analysis of
Attacks on Next Generation Air Traffic Communication,” in Applied
Cryptography and Network Security, M. Jacobson, M. Locasto, P. Mo-
hassel, and R. Safavi Naini, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2013, pp. 253–271.

[11] LFV, “LFV on Air Traffic Controller,”
https://www.lfv.se/en/services/airport-services/air-traffic-control, 03
2020, (Accessed on 18/3/2020).

[12] ——, “LFV on Air Traffic Controller education,” http://www.lfv.se/bli-
flygledare/utbildning, 03 2020, (Accessed on 18/3/2020).

[13] OSM, “OSM Aviation Academy on ATC-pilot communication,”
https://www.osmaviationacademy.com/blog/learn-to-talk-like-a-pilot-
part-3-clearances, 03 2020, (Accessed on 18/3/2020).

[14] J. B. Brookings, G. F. Wilson, and C. R. Swain, “Psychophysiological
responses to changes in workload during simulated air traffic
control,” Biological Psychology, vol. 42, no. 3, pp. 361 –
377, 1996, Psychophysiology of Workload. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/0301051195051678

[15] ATC-Sim, “Website of atc-sim.com,” https://atc-sim.com/, 05 2020,
(Accessed on 14/05/2020).

[16] openScope, “Homepage of openScope Air Traffic Management Simula-
tor,” https://www.openscope.co, 03 2020, (Accessed on 27/3/2020).

[17] ——, “openScope on GitHub,” https://github.com/openscope, 03 2020,
(Accessed on 27/3/2020).

[18] BlueSky, “Bluesky on GitHub,” https://github.com/bluesky/bluesky, 03
2020, (Accessed on 27/3/2020).

[19] BlueSky, “Homepage of BlueSky Open Air Traffic Simulator,”
http://homepage.tudelft.nl/7p97s/BlueSky/, 03 2020, (Accessed on
27/3/2020).

10


